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Abstract-Finite element analysis is used to study the crack growth behaviour ofceramics containing
tetragonal zirconia, which can undergo a stress-induced martensitic transformation with both
dilatation and shear strain components. The finite element model is based on a continuum theory
which describes the plastic, pseudo-elastic and shape memory behaviour of such ceramics due to
the phase transition. First, the continuum model is used to study the possibility of strain localization
phenomena, and the associated loss of ellipticity of the governing equations is taken as an indicator
of critical transformations. Based on these results a set of parameters is generated which guarantee
subcritical transformation behaviour. Next, mode I crack growth simulations are performed by
using an incremental loading algorithmwith a nodal release technique to simulate crack advance
when the critical stress intensity at the crack tip is reached. The development of the transformation
zone near the crack tip is studied in detail, focusing in particular on the effect of the transformation
shear component. Transformation zones and crack growth resistance curves are given to make
comparison with experiments feasible. It is found that the shear component of the transformation,
which has been neglected in most previous investigations, has an important influence on the
toughening behaviour.

I. INTRODUCTION

It is well known that the fracture toughness of zirconia (Zr02)-containing ceramics can be
greatly enhanced by the stress-induced martensitic-type transformation in zirconia particles
(Evans and Heuer, 1980; Green et al., 1989). This toughening mechanism has been applied
in, for instance, partially stabilized zirconia (PSZ), tetragonal zirconia polycrystal (TZP)
and zirconia toughened alumina (ZTA) materials. In an unconstrained zirconia particle,
this transformation from the tetragonal structure to the monoclinic structure, t -+ m, is
accompanied by a volume expansion of about 4.5% and a shear strain of about 16%.
However, the resulting shear strains in a constrained particle are much less, since twinning
occurs where the sense of the different shear bands alternates from one band to the next.

The early, pioneering constitutive model developed by McMeeking and Evans (1982),
and by Budiansky et al. (1983) completely neglected the transformation-induced shear
strains associated with the t -+ m transformation as these shear strains were assumed to
remain small because of twinning. This so-called "dilatant transformation" model has
significantly enlarged the understanding of transformation toughening, but there is un­
satisfactory quantitative agreement with experiments [see, for example, Evans and Cannon
(1986)]. Work ofLambropoulos (1986) has revealed that the influence of the transformation
shear component on the shape of the transformation zone may be quite substantial. By
means of an approximate analysis, he determined a toughening effect which is in better
agreement with experiments. In Lambropoulos' continuum model, twinning is assumed to
relax all shear stresses in the transforming particle, while he further assumes that the phase
transition in all particles occurs instantaneously and completely. Furthermore, his analysis
neglects the coupling between transformation and the disturbance of the crack tip fields
due to transformation. Despite the very approximate nature of this analysis, Lambropoulos'
(1986) conclusions have certainly triggered further research into the effect of trans­
formation-induced shear strains (Stump, 1991 ; Budiansky and Truskinovsky, 1993).

SAS 31:14-E 1923



1924 G. TH. M. STAM et al.

Recently, increasing experimental evidence has been found for the occurrence of
significant transformations shear strains. For instance, Chen and Reyes-Morel (1986, 1987)
and Reyes-Morel and Chen (1988) presented results of hydraulic compression experiments
which showed shear and dilatation effects of comparable magnitude. Based on these and
related observations, Sun et al. (1991) developed a new, micromechanics-based continuum
model to account for both the dilatant and shear transformation effects. Here, we adopt
this model, and use it to study the influence on the shape and size of the transformation
zone as well as on the toughening during crack growth.

The paper is organized as follows. First, a brief introduction to the constitutive model
is given, followed by a stability analysis of the governing equations in Section 3. In particular,
the deformation response during transformation is studied to detect conditions under which
localization may occur due to the loss of ellipticity of the equations. The possibility of loss
of ellipticity has also been observed in the purely dilatant model, where Budiansky et
al. (1983) termed the corresponding transformation behaviour "supercritical". From the
stability analysis, the governing parameters for localization to occur in the presence of
transformation-induced shear strains are found, together with their critical combination.

In Section 4 the crack growth problem is formulated, followed by the presentation of
the numerical method that is used to solve the problem. Transient crack growth is simulated
in a finite element model by a nodal release technique. A parameter study has been carried
out to explore the influence of the strength of the transformation, the transformation
hardening and, in particular, the contribution of transformation shear strains on the
transformation behaviour and on the crack growth development. The results of a number
of detailed computations are presented in Section 6 in terms of predicted transformation
zones and crack growth resistance curves. The results according to the adopted constitutive
model show that the shear transformation strains have a very significant influence on both
the transformation zone and the toughness increase.

Standard tensor notation is used, with tensors being denoted with bold-face characters.
Cartesian components with indices running from 1 to 3 are indicated with Latin subscripts,
while Greek subscripts run from 1 to 2 only. The second-order unit tensor is I, and tr
denotes the trace. The tensor produce is denoted by ® and the following operations apply
to any fourth-order tensor L and second-order tensors A and B: LA = Li;k,Ak,(e; ® e;),
A' B = AijB;j. A superposed dot denotes the time derivative; but since we will not be
concerned with true time-dependent phenomena, any monotonically increasing parameter
may serve as "time" parameter.

2. CONSTITUTIVE BEHAVIOUR

In this section we first summarize the constitutive relations proposed by Sun et al.
(1991) followed by a brief comparison of the model to experimentally derived stress-strain
curves. Finally we show the relation of this model to the dilatant transformation model.

Constitutive equations
In this paper we use the constitutive equations proposed by Sun et al. (1991) to model

the inelastic behaviour of an isotropic composite material that is assumed to consist of a
linear elastic isotropic matrix (referred to with the index M) containing linear elastic
isotropic inclusions (referred to with the index I). These inclusions are metastable tetragonal
particles, which can undergo (eventual reversible) phase transformation involving shear
and dilatation effects. It is assumed that a small representative material sample (constitutive
element) can be taken such that the transformation zone contains a large number of these
constitutive elements, so that a continuum description of the composite can be formulated.
Hence, the constitutive element is assumed to consist of a large number of transformable
inclusions. These quantities in the inside of the constitutive element are considered to be
microscopic quantities and are denoted with lower-case characters. Macroscopic quantities
are referred to with upper-case characters, and can be found by taking the volume average
<.) of the microscopic quantities of the constitutive element. For instance, the microscopic
stress and strain tensors are indicated by (1 and 1>, respectively, and with a given volume
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fraction of second phase (transformable metastable tetragonal inclusions) 1m
, the relation

between microscopic and macroscopic stresses is

(I)

where the volumes of the element, matrix and inclusions are given by V, VM and VI>
respectively.

The strains are assumed to be small and, assuming isothermal deformations, can be
decomposed into an elastic part Ee and a "plastic" part EP due to the t -. m transformation
in the inclusions, which is given by

(2)

where I is the actual fraction of transformed volume which is obviously smaller than or
equal to 1m

• The t -. m phase transition involves dilatational and shear strains within the
inclusion, thus suggesting to split the plastic strain into a dilatational part and a deviatoric
part, designated with superscripts d and s, respectively

(3)

The rates of plastic strain during progressive transformation (J> 0) can be obtained by
straightforward differentiation of (3), but also from the average of the transformation strain
IJP over the freshly transformed inclusions, Le.

. .
EP = Epd+EPs = J(IJPd)v/+J(IJ PS )v/+/(IJPd )v,+/(IJPS )v,

(4)

The dilatational part IJPd within each inclusion is given by IJpd = (1 tr IJPd)I = epdI in terms of
the constant stress-free lattice dilatation epd which typically takes a value of 1.5% at room
temperature; hence

(5)

The average deviatoric part EPs is significantly less than the stress-free lattice shear
strain of 16% because of the twinning effect. Based on earlier work of Reyes-Morel and
Chen (1988) and Reyes-Morel et al. (1988), this part is specified through its rate of change
J(IJPS)dV/, which is assumed to depend on the average deviatoric stress 8M in the matrix
according to

U
M ­e - (6)

Here, A is a material function, which can be considered as a measure of the constraint of
the elastic matrix, and utt is the von Mises stress in the matrix, which will be specified later.
When utt = 0, A should be put equal to zero because there is no stress bias. The experimental
data of Chen and Reyes-Morel (1986, 1987) and Reyes-Morel and Chen (1988) show that
under proportional loading the value of A is almost constant during the whole trans­
formation process. Sun et al. (1991) have emphasized that (6) is a macroscopic constitutive
relationship that is assumed to apply to the ensemble of transformable particles mentioned
in the beginning of the section. The deviatoric transformation strain over individual trans­
formed particles will not depend on the local matrix stresses in such a simple manner. First
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of all, twinning in a particle will occur in well-defined directions on specific crystallographic
planes. Furthermore, the amount of twinning within particles is dependent on particle size
(Evans and Cannon, 1986). Although some research has been devoted to nucleation and
twinning in a single particle, these are still phenomena that are not well understood and
need further attention. However, since in this model many grains with different orientations
are considered within dV/, Sun et al. (1991) argue that (6) is an acceptable approximation
in the average sense. Combining the expressions (4)-(6), the plastic strain-rate is found as

(7)

With the help of Eshelby's (1961) solution for an inclusion in an infinite extended
elastic body and the method of Mori and Tanaka (1973), the deviatoric and mean matrix
stresses, SM and aM, respectively, are found to be

(8)

Here, S = 1: - I:mI and I:m= tr 1:/3 are the deviatoric and mean components of the macro­
scopic stress 1:, and

5v-7 2v-1
B 1 = 2G 15(1-0' B 2 = 2B~, (9)

with G the shear modulus, B the bulk modulus and v Poisson's ratio of the matrix as well
as the inclusion, all being related in the standard way to Young's modulus E

E E
G = 2(1 + v)' B = 3(1-2v)' (10)

Equation (6) can be combined with the elastic law Ee = M°1: to yield the macroscopic
stress rate-strain rate relation

(II)

with M 0 = (L0) - I the inverse of the tensor L°of elastic moduli of inclusions and matrix.
In inverted form, and employing Cartesian components, we then have

(12)

where Em = Ekk /3. For future reference, we note that for plane strain conditions,
E 33 = E l3 = E 23 = 0, so that eqns (II) and (12) reduce to

and

(14)

(IS)

(16)

The constitutive equations have to be completed by specifying the transformation
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condition and the evolution relation in terms of ! Sun et al. (1991) give the following
condition for forward transformation to occur

(17)

The function Co(T, f) depends on the dissipation Do (due to interface friction, for instance),
on the difference in surface energy A o, on the free chemical energy difference AGt~m(T)

associated with the transformation (which depends on the temperature T), and on the
elastic energy associated with the interaction between transformed particles and matrix

The last term in (18) is introduced to incorporate the common experimental observation
that the resistance to transformation tends to increase with increasing volume fraction of
transformed material; here, this "hardening" is governed by the parameter IX. Note that
this hardening term is due to processes on microstructural scale, such as (i) particle size
dependence: it takes a higher stress level to transform smaller particles; (ii) crystallographic
orientation: favourably oriented planes transform first, and (iii) the mutual interference of
transformed regions: transformation of a particle will cause a relaxation of the stresses in
its surrounding. As the constitutive model is derived for the macroscopic scale, considering
many transformable particles in one constitutive element, the hardening effect did not
follow from the derivation itself and Sun et al. (1991) introduced the last term in (18) on
mere phenomenological grounds. The parameter B 0 in (18) is a bulk modulus-like parameter
defined by

in terms of the parameter

4G(1 +v) Gh6(28 - 20v)
B o = +-----

I-v 5(1-v)
(19)

(20)

The latter parameter will be convenient to use in connection with the shear strain constitutive
equation (6), as it relates the strength of the shear strains to the constant dilatation r. Pd

(21)

Reverse transformation (m -+ t) can be described by replacing Co(T, f) in eqn (17) by
Co(T, f), where

Co(T, f) = Co(T, f)-2D o· (22)

Even though some authors (e.g. Marshall and James, 1986) report the possibility of revers­
ible transformation, it is not quite clear if reverse transformation takes place in the wake
of a crack where unloading occurs. Here, for simplicity, we will assume the transformation
is to be irreversible.

The condition (17) furnishes a "transformation surface" in stress space (:E) within
which transformation is excluded, similar to a yield surface in the usual theory of plasticity.
When the transformation proceeds, the transformation surface expands in stress space as
well as translates. Borrowing further notions from plasticity theory, the present material
with transformation plasticity may be regarded to exhibit mixed hardening; isotropic
expansion as a function of f is governed through Co(T, f), while kinematic hardening
originates from the internal stresses appearing in the relations (8) between the matrix
stresses and the macroscopic stresses. Moreover, the plastic strain-rate EP according to (6)
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turns out to be normal to the transformation surface in I:-space, which is a direct conse­
quence of the model assumptions. The proportionality factor is given by j, so that

(23)

The growth rate of the fraction transformed tetragonal phase, j, follows from the
consistency condition F+ = 0, and is found as

(24)

Expression (24) holds as long as the transformation progresses, i.e. when the current stress
state satisfies the transformation condition (17) while there is still a transformable fraction
left, f < fm, and no unloading takes place; this is called the loading or transformation
branch. When the response is elastic, either because the criterion (17) is not satisfied,
F + < 0, or because elastic unloading occurs from a plastic state, F + = 0 and f < 0 according
to (24), we must set J = O. In summary

J=
o

when F+ < 0

or F + = 0 and J < 0

or F+ = 0 and J = O.

(25)

Finally, the constitutive equations will be rearranged into a form which is necessary
for the subsequent numerical analysis. With the relation (II) between strain rates and stress
rates, and introducing the following definitions

one can derive the following rate constitutive equations

:t = Lt,

where the tensor of instantaneous moduli L is defined by

{

L°_! LOT ® TL° when F + = 0 and J > 0

L = g I + ~ (T •LOT)

L O when F+ i= 0 or J < O.

(26)

(27)

(28)

Details may be found in Starn (1992). On the transformation branch, the stiffness tensor L
is comprised of the linear elastic stiffness tensor L° and a nonlinear part due to the
transformation which is similar to the well-known plastic moduli in elastoplasticity. It is of
considerable importance to note that the moduli L possess the following symmetry when
expressed in their Cartesian components L ijkl

(29)

in addition to the obvious symmetries in ij and kl.
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Fig. I. Stress-strain curves for TZP and PSZ obtained by triaxial compression at room temperature.
The dashed lines give the response of the constitutive model.

Comparison with experiments
To illustrate the capabilities of the model, in Fig. 1 the predicted stress-strain relations

are compared with experimental stress-strain curves for TZP and PSZ materials. The
experimental data were obtained under triaxial compression by Reyes-Morel and Chen
(1988) and Chen and Reyes-Morel (1986), respectively. The dashed lines show the theor­
etical response in the axial (x 1) and radial (x 2 and x 3) directions. The strain in the axial
direction is negative and the strains in the radial directions are positive. Obviously, plastic
strains of that nature cannot be described by a purely dilatant model.

For both materials we used E = 190 MPa, v = 0.3 (taken from the above-mentioned
papers) and epd = 0.015. The remaining material parameters for TZP are estimated to be
fm = I, ex = 1.16, ho = 1.3 and with the critical transformation stress under compression
LIe! = 13 X 102 MPa (estimated from Fig. I) and the hydrostatic pressure P = 125 MPa, it
follows from the transformation condition (17) that prior to transformation, Co(To, 0) = 30
MPa at constant temperature To. For convenience we define Co == Co(To, 0). For PSZ the
remaining parameters are estimated to be fm = 0.35, ex = 1.2, ho= 1.3 and Co = 22 MPa
(based on LI'; = 11.5 x 10 2 MPa and P = 120 MPa from Fig. 1).

For the TZP material experiments suggest a nearly perfectly plastic regime just after
initiation oftransformation which later turns into a region were linear hardening is observed.
This bilinear transformation behaviour in TZP cannot be modelled with the present model
and the representation in Fig. I uses linear hardening immediately after transformation.
For PSZ we see that in the experiment the transition from linear elasticity to transformation
plasticity occurs more gradually, whereas in the theoretical model the transition is sharp.
Note that in theory, the response becomes linear elastic again once the transformation is
completed, whereas in the experiment specimens fail before reaching complete trans­
formation.

We may conclude that compared to the capabilities of the dilatant model, the general
material behaviour is described much better: in the triaxial compression test, negative
transformation strains develop in the axial direction due to the influence of the shear
component. The model is capable of following the general trend of the experimentally
derived stress-strain relation, however, more detailed material characteristics, like the
nearly perfectly-plastic regime just after initiation of transformation for TZP, are not (yet)
captured.

Relation to the dilatant transformation model
When the material function A in (6) vanishes, so that ho = 0 according to (20), the

phase transition involves pure dilatation only and the macroscopic shear response is entirely
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B

~ading

Fig. 2. Macroscopic mean stress dilatation response when the transformation is purely dilatant,
h" = O.

linear elastic. Indeed, the above model then reduces to that given by Budiansky et al. (1983).
With reference to the general expressions (11), (12), the dilatant stress-strain behaviour of
the composite with A = 11 0 = 0 can be directly written as

(30)

where the current volumetric transformation strain parameter e introduced by Budiansky
et al. (1983) can be expressed in terms of the volume fraction I and the transformation
dilatation 8Pd as e= 318 pd. This behaviour is illustrated in Fig. 2. When the material is
partially transformed, i.e. I < 1m

, the growth rate of I is found from (24) as

(31)

in terms of the hardening parameter IX. Budiansky et al. (1983) characterize that same
behaviour through the relation

. ( jj).e= 1--- EB pp' (32)

where jj can be directly interpreted as the bulk modulus of the intermediate segment of the
stress-strain curve of Fig. 2 where transformation occurs. Starn (1992) has shown the
following relationship between IX and jj

(33)

3. LOSS OF ELLIPTICITY DUE TO TRANSFORMAnON

The hydrostatic stress~mean strain response shown in Fig. 2 for purely dilatant behaviour
exhibits softening in the intermediate segment where transformation occurs when
jj < O. Budiansky et al. (1983) pointed out that when jj < -4G/3, the incremental governing
equations cease to be elliptic, thus enabling discontinuities in the stress and strain fields. In
that case, discontinuities may also occur in (j so that if jj ~ -4G/3, all particles can
transform spontaneously and completely to the maximal value eT = ~rm8Pd. Accordingly,
they designated materials with jj < -4G/3 as supercritically transforming materials, while
subcritical materials are characterized by jj> -4G/3. In the latter case, the governing
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equations remain elliptic and the material can exist in a stable partially transformed state,
e< eT.

In this section, we wish to explore these different ranges of material behaviour for the
more general model for transforming composite materials of Section 2. We shall do so by
considering the possibility that the associated governing equations lose ellipticity, making
use of the observation that, for a class of constitutive equations of the type (27)-(29), this
coincides with the onset of localization (e.g. Rice, 1976). In contrast to the situation
considered by Budiansky et al. (1983), loss ofellipticity is no longer a material characteristic
alone, but depends also on the current state. Hence, we will have to adopt the term
subcritical in a more narrow sense for materials that, under a given macroscopically
homogeneous state of deformation or stress, exclude loss of ellipticity. Nevertheless, it is
of importance to know which combination of material parameters may lead to localization
during a certain deformation history.

In view of the forthcoming crack growth analyses, we will consider small strain
deformation histories under plane strain conditions. Following Rice (1976), for example,
and adopting in particular the procedure outlined by Ortiz et al. (1987), the onset of
localization is considered as a bifurcation phenomenon from homogeneous deformations
into a deformation field that is discontinuous across a plane with unit normal vector n. The
onset of localization can then be established by considering the so-called localization (or
acoustic) matrix A(n) defined by

A(n) =nLn (34)

in terms of the current values of the moduli L. For localization to occur, the matrix A(n)
has to have at least one zero eigenvalue, which necessitates

I(n) = det (A(n)) = O. (35)

For plane strain, the 10c1.lization matrix is a 2 x 2 matrix and one readily finds that the
determinant of the acoustic matrix det (A(n)) = aoni +alnfn2+a2nin~+a3nln~+a4ni, where
the coefficients (ao, ... , a4) depend on the various components of the current moduli L (see
Ortiz et al., 1987). Setting nl = cos eand n2 = sin ethe localization condition becomes

(36)

where x = tan e. Hence, the onset of localization is signaled with a real-valued solution of
(36) can be found, which then immediately gives the orientation of the localization plane.

As a check on this procedure, we shall first briefly reconsider the loss of ellipticity for
the model with purely dilatant transformations as summarized in eqns (30)-(33). In this
case, the shear part of the macroscopic response is entirely linear elastic. Therefore, to
detect localization, we only need to consider purely dilatant deformation paths. For various
values of .8, we scan the total mean stress-dilatancy path of Fig. 2 by incrementally
increasing the dilatancy. For each increment the current values of the components ofL are
used to compute the coefficients (ao, ... a4) to be substituted into the localization condition
(36). Evidently, in the linear-elastic branches, no localization is found; but, on the inter­
mediate branch where transformation takes place, it is found that localization occurs if
.8::;; -4G/3, or, with (33), if IY. ::;; O. This agrees completely with the results of Budiansky
et al. (1983).

Next the shear effects of the phase transformation will be taken into account as well
(h o i= 0). To detect the possible occurrence of localization, again we will scan the total
stress-strain path for a number of values for IY. and ho, but now we also need to specify the
direction of the deformation path in strain-space. Assuming plane strain situations, we will
do so by considering proportional incremental deformation paths in Eop-space. To get a
reasonably complete picture of the behaviour, we cover a rather wide range of directions
by prescribing the various ratios of incremental principal strains. The ratio p = !1En/!1E 11

will be varied within the range [-1, 1].
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Fig. 3. The critical value of the hardening parameter 0( for which, with various values of hoE {O.OOI,
0.25, 0.5, I, 1.5, 2, 3}, ellipticity is lost during a proportional deformation path specified by

p = dE 22/dE II under plane strain conditions.

For chosen values of ho and p (and v = 0.3), the critical hardening parameter IX at
which localization can occur has been determined numerically from (36) in a similar fashion
as discussed above. In Fig. 3 the critical values of IX are plotted as a function of the strain
ratio p E [ -I, 1] for various values of ho. The curve for each value of ho separates the
elliptic region from the non-elliptic region. Above each curve, localization is prohibited and
ellipticity of the equations is ensured; for values of IX below the curve, localization will
develop as soon as the transformation is initiated. Borrowing the Budiansky et al. (1983)
terminology, the curves in Fig. 3 thus separate the supercritical transformation regimes
from the subcritical regimes in which the transformation process develops gradually; but,
it should be remembered that this holds essentially only for the plane strain proportional
deformations considered here.

From Fig. 3 it is seen that, when ho is reduced to zero, the critical value of IX asympto­
tically reduces to rt. = 0, independent of the strain ratio p. This confirms the earlier result
for the purely dilatant model. If the transformation shear effects are not neglected (h o -# 0),
it can be seen that for ellipticity to be guaranteed for an increasing influence of the
transformation shear effects, i.e. increasing values of ho, the hardening parameter rt. must
be increased. For increasing values of ho, and for negative values of p, the critical hardening
parameter rt. tends to approach the value unity. However, it should be noted that with
increasing values of ho, the model is increasingly sensitive to nonproportional loading
histories; but here, no attempt has been made to investigate the influence ofnonproportional
loading histories. Nevertheless, the results suggest that a value of rt. ~ I will probably be
large enough to avoid localization. All crack growth results to be presented later have used
values for rt. in this range. Experimental results described by Sun et al. (1991) indicate values
ho = 1.4 and rt. = 1.16 for TZP materials, and ho = 1.3, rt. = 1.2 for PSZ materials. Clearly,
these values fall in the ellipticjsubcritical regimes of Fig. 3.

4. FORMULATION OF THE CRACK GROWTH PROBLEM

In this section we turn to the study of the fracture toughening caused by the phase
transition, using the constitutive model of Section 2. The particular transient crack growth
problem that we use, is similar in many aspects to that studied by Hom and McMeeking
(1990). The present exposition of its formulation will therefore be rather brief, and focus
mainly on the novel aspects associated with the shear transformation strain effects.



Crack growth in zirconia-containing ceramics 1933

SMALL SCALE PROBLEM

NEAR TIP REGION

Exampleofa
'MODE I' loading
experiment

partially transformed zone-.
fully transformed zone

Fig. 4. The small scale transformation assumption and the corresponding boundary-value problem
for a semi-infinite crack subjected to a mode I opening mode.

As stated in Section 2, the induction of the transformation of tetragonal zirconia
requires a certain critical stress level. Because of the high stresses that develop in the
neighbourhood of the crack tip, the material near the crack tip will undergo the trans­
formation, but the height of the transformation zone will remain small compared to the
length a of the crack (Ruhle and Evans, 1989). Under this small scale transformation
condition, the stress field remote from the tip is not disturbed by the transformation strains
and an asymptotic problem can be formulated for a semi-infinite crack (see Fig. 4). Under
mode I loading and plane strain conditions, the stress field remote from the tip is given by

K APP

~ij = r:c::. fij((J), r -+ 00,

v' 2nr
(37)

where K APP is the elastic stress intensity factor which will be referred to as the applied stress
intensity factor, and where the fij(O) are the universal dimensionless angular functions.
Thus, a domain Q can be considered where the displacement boundary conditions can be
prescribed by using the linear elastic relations, if the applied stress intensity factor K APP is
known.

As the tip of the crack is approached, the transformation zone is encountered, and the
stress field is disturbed by the transformation strains. In the immediate vicinity of the crack
tip, a zone of completely transformed material (f = fm) will be present, surrounded by a
zone of partially transformed material (f < fm). Inside the fully transformed zone, the
incremental response of the material is again linear elastic, so that the stress field has
precisely the same form as in (37) but with a different intensity factor K TIP

, i.e.

K T1P

~ij = r:c::. fij(O), r -+ O.
v' 2nr

(38)

It is assumed that K T1P governs the fracture process near the tip, so that the crack advances
when K TIP = K C

, the fracture toughness of the composite at the crack front. Because of the
transformation, KTIP and K APP will differ by an amount flKTIP defined by

(39)

where flKT1P < 0 if shielding occurs due to the transformation strains.
It is the reduction from K APP to K TIP that determines the toughness enhancement due to

transformation. Obviously, when no transformation occurs K TIP = K APP
• If transformation

strains start to develop under monotonically increasing K APP
, even while there is no crack

growth yet, then in general K T1P #- K APP
• Budiansky et al. (1983) showed, however, that for

the purely dilatant model the conclusion K TIP = K APP is retained prior to crack propagation
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on the basis of the path-independence of the i-integral (Rice, 1968). The proof relies on
the observation that the dilation at each point will increase monotonically as KAPP is
increased, so that the transformation-induced inelastic behaviour can be approximated by
a nonlinear elastic set of constitutive equations, for which the path-independency of the
i-integral still holds (Turner, 1979). This conclusion does not apply to the more general,
incremental constitutive model of Sun et al. (1991) that was discussed in Section 2. Because
of the stress redistributions in the vicinity of the crack tip that will accompany the phase
transformations, the deformation path of a material point does not remain proportional.
Hence, even when the unloading response can be disregarded, the actual response cannot
be replaced with a nonlinear elastic response as in the purely dilatant case. Therefore, it
must be concluded that, with the constitutive model of Sun et al. (1991), the initial
transformation zone, i.e. prior to crack growth, may already influence the toughness. This
will be demonstrated further in Section 6.

If KTIP reaches the critical stress intensity KC
, the crack propagates and a wake of

transformed material is formed. KTIP decreases relative to KAPP, so that in order to maintain
crack growth, K APP must be continually adjusted so that KTIP equals the critical value KC

.

Although the intrinsic material toughness does not change, the effective toughness is given
by K APP and will in general be a function of the crack advance l1a. The relative toughness
increase is defined by K APP

/ KT1P = 1- I1KrlP/Kc. In the present paper, the toughening effect
will be computed by a slight extension of a method discussed by McMeeking and Evans
(1982) and Budiansky et al. (1983). The near-tip intensity reduction I1KT'P is obtained by
integration over the upper half n of the transformed zone, of the intensity enhancement
dKTlP under plane strain mode I conditions due to two "spots" of infinitesimal area dA
undergoing a transformation strain:

I1KrIP = ffdK
T'P

.

fl

(40)

One of the spots is located at (r, (3) (see Fig. 4) with respect to the crack tip, and is
characterized by the in-plane stress-free transformation strains E~ 1, Ep22, E~ 2, while the
second is located symmetrically with respect to the crack plane at (r, - (3), and undergoes
stress-free transformation strains E~ j, EP22 , - E~ 2' The explicit form of dKTlP under con­
ditions of plane stress has been given by Hutchinson (1974). When we neglect higher order
terms and enforce plane strain conditions [see also Budiansky et al. (1983)], it follows that

where

TIP _ I E - 3/2 I' f3 ddK - r,- --2) r M(E,p,) A,
v' 8n (1- v

(41 )

[see also Lambropoulos (1986)]. The transformation strains E~p to be substituted into for
the present situation are the in-plane transformation strains that would occur under plane
strain conditions but without in-plane stresses, i.e. 'L,p = 0 with En = O. With the general
three-dimensional transformation strain EP in each spot being given by (2), it follows from
the plane strain expressions (13) that the resulting nonzero strains are given by

E~ I = (I + V)fB pd + f[<BfD v, - v(<BfD v, + <Bq2> v)]

E~2 = (I + V)fB pd +f( <Bq2> v, - v(<BfD VJ + <Bq2> v,))

(43)

which can also be found in Lambropoulos (1986). The transition of the mode I experiment
to a small scale problem, as illustrated in Fig. 4, implies the loss of the crack length a as an



Crack growth in zirconia-containing ceramics

3

2

0
X2

T

-I

-2

ho = 3

-3
-I 0 2

x1/L

Fig. 5. The shape of the transformation zone, normalized by the length parameter L for various
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explicit length scale which is then implicitly prescribed in KAPP
• To normalize all length

scales, we use the parameter L defined by

with

L = l:- [K
C

{h o(1-2V)+(1 +V)}]2
9n L C

(44)

(45)

Physically, L is the distance on the axis in the direction of the crack, from the tip to the
boundary of the transformation zone, when it is assumed that the transformation strains
are so small that they do not disturb the elastic stress field. This approximate transformation
zone is then readily obtained by substituting the unperturbed stress field into the trans­
formation criterion (17), which then reduces to

(46)

[for more details see Starn (1992)]. This expression emphasizes that the parameter hogoverns
the influence of the shear transformation strains and, as a result, the shape of the (initial)
transformation zone. The approximate initial transformation zones thus found are shown
in Fig. 5 for various values of ho. If ho = 0, then the constitutive model reduces to the
dilatant model and the definition of L given in (44) reduces to the one by Hom and
McMeeking (1990). For this special case, the shape of the transformation zone was already
determined by McMeeking and Evans (1982). If the value of ho is increased the height of
the transformation zone, when scaled with the parameter L, is increased, and also the shape
changes.

Finally, the solutions depend on the strength of the transformation, which will be
characterized by the same nondimensional parameter OJ as used by Hom and McMeeking
(1990)
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(47)

Notice that this parameter is not modified for the additional effect of transformation shear
strains, because their intensity is related to epd, see (6) and (20).

5. FINITE ELEMENT ANALYSIS

A displacement-based finite element method is used to solve the boundary-value
problem described in the previous section. Extensive use is made of the fact that the
constitutive equations for the Sun et at. (1991) transformation model have been cast in a
form [eqns (27) and (28)] that is completely similar to the usual time-independent elasto­
plasticity equations with an associative flow rule. In that case the parameter time, t, may
be replaced by any other monotonically increasing parameter; here time is replaced by
KAPP

• The resulting finite element equations for the displacement rates are then solved in a
linear incremental manner. In each increment i, the nodal displacement increments Au(i) are
solved from

(48)

where AF(i) is the vector of nodal load increments and where the stiffness matrix S(i) is
determined by the instantaneous moduli L appearing in (27). The bracket term on the right­
hand side of (48) is an equilibrium correction based on the current discrete stress state,
collected formally in the vector I:.(i). With these Au(i), the state in each integration point is
updated in the usual manner for geometrically linear elastoplasticity problems. If after some
loading the critical stress level is reached so that the transformation criterion F + = 0 is
satisfied, the incremental volume fraction of transformed material Af(i) can be found from
the incremental version of (25). It is emphasized that, in contrast to the situation in case of
the purely dilatant model of Budiansky et at. (1983), the current transformation strain will
have to be determined incrementally as well. The deviatoric part deserves special attention.
With <8ps>~~1 being determined from the current stresses sM according to (6), the incremental
change of EPs is obtained from (7) as

(49)

On the other hand, according to (3) we also have Ef;-:'-I) = j(i+ I)<ef;s>~: I) from which we
can compute the deviatoric components of the particle transformation strain as

(50)

In our analysis, about 100 loading increments AKAPP are applied to reach the critical
value K C at the crack tip. This turned out to be necessary to accurately describe the
development of the initial transformation zone, and in particular to account adequately for
the nonproportional stress changes that accompany the resulting stress redistributions
inside and in the vicinity of the expanding transformation zone. Furthermore, on the
transformation branch of the constitutive response, ten subincrements are taken within
each increment in order to be able to take relatively large loading increments to save
computing time. The incremental loading displacements Au, found from (48), are simply
divided into ten equally sized subincremental displacements AAu, which are then used to
incrementally calculate the incremental strains and stresses, and also the transformation
behaviour, in a similar manner as discussed above. However, if the current stress state is
not on the transformation branch, so that the material behaviour is linear elastic, no
subincrements are taken in order to reduce computation time. If during an increment the
material's response changes from linear elastic to a transformation plasticity response, the
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(a)

Crack surface~

(b)

(c)

tCrack tip start position

90

__5

Crack tip end positiont
Fig. 6. The finite element mesh used to analyse the small scale crack growth problem.

first subincrement is taken such that the transformation criterion (17) is met exactly, and
subsequent subincrements are taken to follow the transformation branch. In case the
material's response changes to the linear elastic branch because the transformation is
exhausted, I ~1m

, the last subincrement on the transformation branch is adjusted such
that the updated value of I is exactly equal to the maximum value 1m

•

In the finite element analysis, quadrilateral elements are used, each of which is built
up of four constant strain elements. The mesh that has been used is shown in Fig. 6, and
contains 2770 quadrilateral elements and 2880 nodes. Only the upper half of the small scale
region has been considered because of symmetry. Displacement boundary conditions are
prescribed on the circular outer boundary. The mesh is designed such that the mesh is
highly refined near the tip, as shown in Fig. 6. At the start, the crack tip is placed at three
elements to the right of the left-hand side of the rectangular region of the mesh, as shown
in Fig. 6(c). Crack growth was permitted over a span of 80 nodes to the right-hand side of
the mesh.

The stress intensity at the crack tip, K TlP
, is computed numerically on the basis of the

integral formulation (40)-(42) by a 13-point Gaussian-integration within each element.
Near the crack tip (within a radius of three elements) the integration is carried out ana­
lytically to take care ofthe singularity in (41) at the tip. When this value reaches the critical
stress intensity K C

, crack growth is simulated by using a nodal release technique comparable
to the method used by Hom and McMeeking (1990). The nodal force at the current crack
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tip node position is stepped down to zero in five increments, and the displacement boundaries
at the outer radius are adjusted to the new position relative to the moved tip.

6. RESULTS

The crack growth problem defined above is characterized by the following parameters:
K APP

, Aa, L (small-scale transformation problem), E, v, fm, SPd, L', a, h o (deformation
response of material) and K C (fracture process). The numerical results of the refined
computations described above to be presented here will focus on the evolution of trans­
formation zones and the toughness increase K APP(Aa)jK C during crack growth. Dimensional
analysis reveals that the solution must depend on nondimensional combinations of these
parameters, and upon close examination of the governing equations, it follows that these
results can be expressed in terms of the following subset of these nondimensional parameters

K APP Aa
-Kc -' --L' v, a, W, ho· (51)

Of course, other combinations may be chosen, but this set turns out to be convenient. Note
that this set of parameters is similar to that considered by Hom and McMeeking (1990)
but augmented with the parameter horelating the shear transformation strain to the constant
lattice dilatation SPd.

Throughout the analysis we take v = 0.3 in (51), but various combinations of the other
parameters W, a and hoare considered to study their effect on toughening as well as on the
size and shape of the transformation zone. Proceeding from the parameter study by Hom
and McMeeking (1990), the strength of the transformation is varied from W = 5 to 10. For
each value of w, the hardening parameter a is chosen to be either I or 1.25. The smallest
value of the hardening parameter a is chosen to be I to avoid localization over a wide range
of material parameters, as discussed in detail in Section 3. The value a = 1.25 has been
chosen as a representative value to cover the experimental values ofa = 1.16 and 1.2 for
TZP and PSZ, respectively, given by Sun et al. (1991). For each of the four combinations
of these parameters, the influence of the transformation shear is varied by taking ho = 0,
0.5, 1.0 or 1.5, which covers the experimental values given by Sun et al. (1991) for various
materials and includes the limit of pure dilatational transformations for comparison. It
would have been interesting to perform computations for larger values of W but the
number of variations was limited because of time considerations: a typical crack growth
computation up to a steady-state situation required about 95 CPU hours on a SUN Sparc
workstation 1.

Before presenting the results of these computations, it is instructive to comment on
the way in which the intensity of the transformation shear strains is related to the dilatation
SPd. A convenient parameter to characterize the rate of change of the amount of trans­
formation shear strains in the composite material is

E• p.l· = JItr EP:;O = 2'jh· SPde 3 0 , (52)

where, in the last equality, we have substituted the expressions (6) and (7) to eliminate
EPs. This can be immediately integrated during the deformation process to find that
E~s = 2jhosPd, showing that the intensity of the transformation strain only depends on the
volume fraction f, since the factor 2hos Pd is a constant that for a given value of Spd depends
on the choice of ho. The maximum value of ho should correspond therefore to a material
in which no twinning occurs. As already mentioned in Section 2, the stress-free lattice shear
strain in Zr02 is 16%, so that with SPd = 1.5% it follows that hrgax ~ 3.08. The lower bound
of ho corresponds to a situation where twinning completely eliminates the average shear
transformation and ho = O. In this case the transformation is purely dilatant and the results
agree well with those ofHom and McMeeking (1990). Noting that these authors used a quite
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different, iterative rather than an incremental scheme, this agreement gave us confidence in
the numerical procedure.

To check the convergence of the solution, some computations with refined meshes
have been performed. In this small scale problem, mesh refinement can be obtained simply
by increasing the characteristic length L with respect to the dimensions of the smallest
element, while leaving all other parameters unchanged. In this way the transformation zone
will contain more elements and more accurate results should be obtained, as long as the
small scale condition is not violated.

Transformation zones
Since for all chosen material parameters, the material behaviour is subcritical (see

Section 3), the transformation varies continuously around the crack tip. In this case, a
convenient way to visualize the transformation zones is to plot the distribution of trans­
formed material by means of contours of constant value of the ratio of the transformed
fraction compared to the maximum available transformable fraction, flfm. No attempt has
been made to smoothen the contours, so that, in particular when the transformation zone
grows outside the highly refined zone around the crack path, the contours may come out
somewhat irregular. The transformation zones for the four combinations of rt and w
considered, are shown in Figs 7-10 for various values of ho. In these plots, the elements in
which the material is completely transformed (flfm= 1) are also shown. For the subsequent
discussion, it is convenient to follow experimental practice and define the height of the
transformation zone h as the distance in x2-direction from the crack surface to the point
where the fraction of transformed material is 50% (flfm = 0.5) (see also Fig. 7d).

It is seen that the area around the crack path is fully transformed. Moving further into
the material, perpendicular to the crack surface in the X2 direction, the fully transformed
zone is followed by a region of partially transformed material and finally the untransformed
material is reached. In general, the zone height increases as the crack grows. From a
mechanical point of view, this can be explained by noting that the transformation­
plasticity shields the crack tip, so that KAPP must be increased to maintain the critical stress
intensity at the crack tip, as mentioned before. Increasing the value of KAPP

, raises the
stresses in the elastic field and thus enlarges the region where the critical transformation
stress is reached. After some crack growth, however, the initial sharp increase becomes
more gradual due to stress redistributions and the zone height reaches a maximum. In the
present analyses, the cracks could only grow over a limited distance and in some cases­
particularly for larger values of ho-the maximum value had not yet been attained. In all
cases where a steady-state was reached, the steady-state zone height is found to be slightly
smaller than the maximum height. Table I gives the value of the peak height h of the
transformation zone, together with the value l1alL when this peak occurs.

Examination of the results reveals that, in general, the shape and the size of the
transformation zones is strongly influenced by whether or not the transformation is near­
critical. As discussed in Section 3, this depends on the hardening rt, the influence of the
shear transformation hoand the deformation path. In Fig. 7 for instance, where w = 5 and
rt = I, it is observed that contours of flfm approach each other for ho = 0.5 and for ho = 1.0,
as compared to the dilatant case (h o = 0). This is indicative of near-critical behaviour, and
can be explained to a certain extent by consideration of Fig. 3. Knowing from the finite
element analyses that in the range 0.5 ~ ho ~ 1.0, the ratio p = 11£22111£11 of strain
increments in the region where transformation takes place is in the interval [- 0.3, 0.3], it
is seen that a value rt ~ I is really needed around ho = 1.0 to prevent localization, and thus
supercritical behaviour. For h o = 1.5, the situation is less critical since for this case a
hardening of rt = 1is only needed for values of p < - 0.1, whereas inside the transformation
area, the parameter p is found to vary between 0 and 0.6. This results in a much more
gradual transition from fully transformed to untransformed for ho = 1.5.

As for the frontal parts of the transformation zones shown in Figs 7-10, it is seen
that the zones enlarge in the Xl direction with increasing value of ho, and also that the
transformation zone shapes change rather drastically. When the hardening is increased
from a value rt = 1 to 1.25 as shown in Fig. 8, it is observed that for all ho the transition

SAS 31: 14-F
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Table 1. Peak values of transformation zone heights and fracture toughnesses

5 5 5 5 5 5 5 5 10 10 10 10 10 10 10 10
0

(j)

1 1 1 1 1.25 1.25 1.25 1.25 1 1 1 1 1.25 1.25 1.25 1.25
-l

ex ?=
ha 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5

~
Peak h/L 0.45 0.78 >0.96 0.79 0.37 >0.64 >0.75 0.70 0.33 0.69 0.78 1.38 0.23 0.46 0.51 0.34 Vl..,
Aa/L l.l5 3.74 >5.81 3.74 1.00 >4.98 >5.81 1.71 1.00 4.98 >5.81 5.87 0.70 2.99 >5.81 0.57 >a::
peak KAPP

/ K TiP l.l9 > 1.35 > 1.46 > 1.89 l.l8 > 1.33 > 1.49 1.74 1.35 > 1.63 >1.72 >2.86 1.31 > 1.57 1.79 2.12
~

Aa/L 2.98 >4.98 >5.81 >6.50 2.84 >4.98 >5.81 3.04 2.75 >4.98 >5.81 >6.50 2.54 >4.98 >5.81 4.63
~
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Fig. 7. Transformation zones (a)-(d) when t!a = 4L, 4.98L, 5.81L and 6.50L, respectively, and the
crack growth resistance curve (e) for the case w = 5 and ex = I with various values of ho.

from fully transformed to untransformed material remains smooth, indicating that the
transformation behaviour does not approach the critical regime. In this case, increasing the
value ofhoresults in transformation zones that are more diffuse and that have larger frontal
zones. When the strength of the transformation is increased to w = 10, as shown in Figs 9
and 10, similar trends are observed. However, in general, the transformation behaviour
appears to be less critical, which is probably caused by a larger redistribution of stresses
due to the transformation.

Several experimental studies of the shape and the size of the transformation zone are
available in the literature [see, for example, Marshall et al. (1990), Ruhle and Evans (1989)
and Yu and Shetty (1990)]. Depending on the material, these works indicate various kinds
of transformation zone shapes. The front of the zone found by Marshall et al. (1990), seems
to be similar to the rounded shape found for a purely dilatant material, while Ruhle and
Evans (1989), for ZTA materials, indicate a zone shape that has the same characteristics
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Fig. 8. Transformation zones (a)-(d) when!'1a = 4L, 4.98L, 5.81L and 6.50L, respectively, and the
crack growth resistance curve (e) for the case w = 5 and IX = 1.25 with various values of ho.

as found here for sufficient large values of h Q • It is emphasized however that completely
different experimental techniques for visualization of the transformation zone have been
used in the above references, and that it is far from straightforward to directly relate those
experimental observations to the transformation zones shown in Figs 6-10 in terms of
transformed volume fraction. A thorough comparison oftransformation zone shape as well
as size needs more work and is outside the scope of the present paper.

As there is some experimental evidence of shear bands in PSZ and TZP materials
(Chen and Reyes-Morel, 1986; Reyes-Morel and Chen, 1988), any information about the
direction in which these bands are most likely to develop is of interest. It should be recalled
that we have chosen our material parameters such as to a priori exclude the possibility of
localization into a shear band, for example, with the constitutive model of Section 2. A
study of shear band formation is outside the scope of the present paper. Nevertheless, it is
of interest to have some insight in the directions into which the transformation shear is



i]
(a) -1

Crack growth in zirconia-containing ceramics

fit" =.:<.0=.05~-=- _::e:= 0.25 6.5Qii: ho = 0.0

~I i ~ ~I
0123456

1943

i:~~hl·0'
(b) -I 0 1 2 3 4 5 6 7 8 9

X2:~~~
L _~I.O

o I

(c) -I 0 1 2 3 4 5 6 7 8 9 10 11

4 fit" = 0.05

3 O.

x2
2L

0.50

0

-I 0 2 3 4 5 6 7 8 9 10 11
(d) x1/L

3.0
0) = 10 a=1

2.75

2.5

KAPP
2.0

KT

1.0

1.5
0.5

0.0

1.0
0 2 3 4 5 6 7

(e) !J.a/L

Fig. 9. Transformation zones (a)-(d) when !J.a = 4L, 4.98L, 5.18L and 6.50L, respectively, and the
crack growth resistance curve (e) for the case w = 10 and CI. = 1 with various values of ho•

most profound. Therefore, we have computed the directions of the "octahedral" planes at
which the transformation shear strain reach maximum values. For the case ill = 10 and
Q( = 1.0, the direction of the transformation shear strain is visualized in Fig. 11 by way of
the orientation of crosses; the size of the crosses indicates the value of the maximum
transformation shear strain. From this figure, there seems to be a tendency that increasing
the value of hocauses a change in the shear directions close to the crack surface from ±45°
towards around 60° to - 30°. Moreover for ho = 1.5 it is remarkable that initially the
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Fig. 10. Transformation zones (a)-(d) when I'w = 4L, 4.98L, 5.81L and 6.50L, respectively, and
the crack growth resistance curve (e) for the case OJ = 10 and IX = 1.25 with various values of ho.

transformation shear strains develop in a well-defined direction of ~ 60° to - 30°, while
after some crack growth, the value of the maximum shear near the crack surface decreases.
For h o = 0.5 and 1.0 the value of the maximum transformation shear strain remains more
or less constant during crack advance. These analyses have been repeated with ex = 1.25
and/or w = 5, but these trends did not change significantly and the results will not be shown
further.

As an illustrative example, the crack tip opening at various stages of crack growth is
shown in Fig. 12 for the parameters w = 10, ex = 1 and ho = 1.5. For illustrative purposes,
the crack opening displacements are reflected (scaled by a factor 12.3) to show the actual
crack shape. In the first stage (I) shown in Fig. 12, no crack growth has yet occurred but
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Fig. 12. Crack tip opening for various amounts of crack growth, Aa = 0, I.6L, 3.25L, 4.88L and
6.50L. At Aa = 6.50L the deformed mesh is drawn and contours for flfm are shown. The defor­

mations are scaled by a factor 12.3.

some crack tip blunting has occurred. It is seen that as the crack propagates, the crack faces
are pushed towards another due to the phase transformation. In the final stage, V, shown
in Fig. 12, the deformed mesh is also drawn, along with contours of film.

Toughness development
Prior to any crack growth it is found that for ho = 0 the initial toughness is not changed

by the transformation strains, while for ho > 0 it seems that the initial toughness is increased.
However, when the mesh is further refined a decreasing initial toughness value is found,
which finally converges to a value of about 80% of the critical toughness of the material
when the mesh is about ten times as fine. Thus prior to any crack growh, embrittling ofthe
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material seems to takes place, but after the slightest crack extension the toughness increases
drastically and picks up with the values shown in Figs 7~1O. Similar convergence checks
were performed after crack growth had occurred, and showed that the fineness of the mesh
could be reduced to the currently used meshes to obtain converged results for crack growth
analysis.

The toughness increase, expressed in terms of KAPP
/ K T1P

, as a function ofcrack advance
l1a/L for each of the cases mentioned above is shown in Figs 7(e)-10(e). As observed for
purely dilatant materials already by Hom and McMeeking (1990), the crack growth resist­
ance exhibits R-curve behaviour, i.e. the toughness generally tends to increase during the
first stage of crack growth, then reaches a maximum, followed by a slight decrease before
it settles down at the stationary value for steady-state growth. From these figures as well
as from Table I we may note that, similar to the development of the transformation zone
height, the maximum value for toughening has not yet been reached in some cases for which
further crack growth would be necessary.

Evidently, the effect of transformation-induced shear strains on the crack growth
resistance is of central importance. It is clearly seen from Figs 7(e)-1O(e) that for all values
of wand rx considered here, the toughness is increased significantly with increasing value
of ho. Even a relatively small contribution of transformation shear strains, represented by
ho = 0.5, roughly doubles the toughness increase that is obtained when the transformation
would be purely dilatant (h o = 0). Larger values of ho result in an even higher toughness
increase, but the enhancement depends on the values of wand rx. There does not appear to
be a clear relationship though between the value of hoand the crack advances at maximum
crack growth resistance. Like in the purely dilatant case, the toughness increases with the
strength of the transformation as characterized by w. It can also be seen that the peak as
well as steady-state values of the toughness generally increase with decreasing value ofrx,
irrespective of ho. The lower the hardening parameter rx, the more material is fully trans­
formed and the higher is the toughness increase.

7. CONCLUSION

In this paper, we have presented numerical studies of transient crack growth in ceramic
composites exhibiting transformation-plasticity based on the recent model of Sun et al.
(1991) that includes the effect of transformation-induced dilatation as well as shear. Our
analyses supplement those ofHom and McMeeking (1990) who only considered dilatational
transformations. The finite element results obtained here with the Sun et al. (1991) model
show a very significant influence of the transformation shear strains on the transformation
zone size and shape, as well as on the toughness development during crack growth. An
increasing influence of the shear effect, as governed in the model by the parameter ho,
roughly speaking, leads to larger and more diffuse transformation zones. The increase of
toughness with increasing value of ho has been found to be quite substantial as compared
with the toughness increase that is obtained by purely dilatational transformation only. For
values ofh obetween I and 1.5, which are representative for Zr02 composites, we have found
improvements of toughness that are four to eight times larger than without transformation­
induced shear strains. Since, so far, dilatant transformation-based theory has under­
estimated the toughness enhancement found in experiments (Evans and Cannon, 1986), the
present results with transformation-induced shear effects contribute to explaining this
difference. However, any definite conclusions to that effect will have to await a more detailed
comparison with experiments on specific materials.

The predictions presented here have been obtained with values of the hardening
parameter rx that are representative of the experimental values suggested by Sun et al.
(1991). Smaller values of r:t. would probably have given even stronger toughening, with the
limit being set by the occurrence of a supercritical response. We emphasize that for the
values of rx used in the present study, localization analysis has indicated that the behaviour
will be subcritical for all deformation paths, and indeed in our crack growth computations
we have not experienced any sign of loss of ellipticity.



Crack growth in zirconia-containing ceramics 1947

It is pertinent here to relate the present work to the first analysis of transformation
shear effects by Lambropoulos (1986). There are a number of differences with the consti­
tutive model that he applied as well as his analysis of the small scale transformation problem.
Regarding the constitutive model, we have to refer of course to the original paper of Sun
et al. (1991) for details, but we mention two of the most important differences with the
model of Sun et al. used here. First and foremost, Lambropoulos assumed that the t -+ m
transformation occurs at the same moment for all transformable particles and proceeds to
completion at once; this is similar to what Budiansky et al. (1983) called supercritical
behaviour. As mentioned before, here we focused primarily on subcritical behaviour as
this was suggested by experiments. We have found that with increasing contributions of
transformation-induced shear strains, there is tendency to develop rather large and diffuse
transformation zones; clearly, this does not support Lambropoulos' assumptions. Secondly,
in Lambropoulos' model the particle is assumed to be incapable of supporting any shear
load at transformation, whereas here the stresses inside transformed particles are related
to the matrix stress state through an Eshelby type of argument, which is likely to give a
more accurate representation. Finally, Lambropoulos assumes that the level of trans­
formation within the transformation zone is small enough so that an asymptotic analysis
can be used in which the stress state as the boundary of the transformation zone is
approached from outside, is approximately the same as the unperturbed elastic solution.
Here, full account is given of the effect of transformation-plasticity on the near-field stress
fields. Supplementary to the present study, Starn and van der Giessen (1993) have studied
crack growth in materials where the hardening parameter was chosen as Q( = I cor­
responding to (at least near-) supercritical behaviour, and found that only for very low
strengths of the transformation, say w < 0.1, an asymptotic analysis gives reasonable
agreement with the numerical results.

In relating studies like the present one with real polycrystalline ceramic materials, it
should be kept in mind that we have applied a continuum mechanics approach here. As
put forward by Lambropoulos (1986) and others, the validity of the continuum approach
may be questionable in some cases when the transformation zone height only spans a few
grains. According to data given by Budiansky et al. (1983), the height of the transformation
zone for a typical PSZ material is 0.6 lim. With a typical size of0.3 lim for the transformable
lens-shaped particles, it follows that the number of particles over the height is only about
two. For a TZP material described by Reyes-Morel and Chen (1988), it was found that the
height of the transformation zone varies between 0.1 and I mm. Thus, with a typical grain
size of 2 lim it follows that the transformation zone spans many (50--500) particles, from
which we may conclude that for the latter material the continuum approach may be valid.
For PSZs, however, further detailed analysis of t -+ m transformations in individual particles
would be necessary to quantify the minimum number of grains over the transformation
height for which the continuum model is still valid. Also, we want to emphasize that the
results presented here are only valid for small scale transformations, and the model pre­
dictions cannot be applied when the transformation zone is spread widely throughout the
test specimen.

In the present work we have limited our parameter study to values of the strength w
of the transformation up to w = 10. However, experimental work on TZP materials by
Reyes-Morel et al. (1988), for example, indicates values of w that are twice as large. Results
for larger values of w will be published elsewhere. Further, we have excluded in our analyses
the possibility of reverse transformations. However, some authors have reported reversible
transformation (Marshall and James, 1986) and shape memory effects (Reyes-Morel et al.,
1988). The constitutive model used here is potentially capable of describing these phenom­
ena, and as it is not unlikely that reversible transformation does occur in places where
unloading takes place as a result of for instance crack growth, this requires further inves­
tigation. This work is currently in progress and will be published elsewhere.
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